Vibration-based structural damage detection using 1-D convolutional neural network and transfer learning

Author:

Teng Shuai1,Chen Gongfa1ORCID,Yan Zhaocheng1,Cheng Li2,Bassir David3

Affiliation:

1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China

2. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

3. Centre Borelli, CMLA, ENS Cachan, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France

Abstract

This paper presents a novel vibration-based structural damage detection approach by using a one-dimensional convolutional neural network (1-D CNN) and transfer learning (TL). The CNN can effectively extract structural damage information from the vibration signals. However, the CNN training needs enough samples, while some damage samples (scenarios) obtained from real structures are limited, which will compromise the CNN ability to detect structural damage. As a solution, the numerical models have potential to provide sufficient CNN training samples; meanwhile, the state-of-the-art TL technique can significantly shorten the network training time and improve the accuracy. Therefore, this paper proposes a new method to detect the damage of a bridge model. The 1-D CNN is firstly trained with the samples of the single damage scenarios of the numerical bridge model. And then it is transferred to the complex scenarios of multi-damage (double or triple simultaneously), random size structures, and experimental model. The results demonstrate that: with the TL, the accuracy of damage detection is increased by about 47% at most, and the convergence speed is increased by at least 50%; in particular, the TL can inhibit over-fitting, and for the real bridge case, the accuracy also increased by 44.4%. It is demonstrated that: the TL can effectively improve the damage detection accuracy and convergence effect, and the application of this method to the random size structures also proves its generalization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3