CNN-Based Damage Identification of Submerged Structure-Foundation System Using Vibration Data

Author:

Pham Ngoc-Lan1,Ta Quoc-Bao1,Kim Jeong-Tae1ORCID

Affiliation:

1. Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea

Abstract

This study presents a convolutional neural network (CNN) deep learning approach for identifying damage in submerged structure-foundation systems using vibration data. Firstly, foundation damage in a lab-scale caisson-foundation system is simulated to measure time-history responses. Singular value decomposition (SVD) responses are derived from the time-history responses. Secondly, the 1-D CNN deep learning model is trained using both the time-history responses and SVD responses. Finally, the trained CNN models are implemented to evaluate the foundation damage under conditions of noise contamination and partially untrained data. The experimental results demonstrate the effectiveness of CNN models for damage identification and highlight the comparative strengths of time-history and SVD data. The CNN model trained using SVD data outperforms the other model when under noise contamination conditions, while the CNN model trained using time-history data maintains better accuracy in partially untrained data conditions. Integrating both types of data enhances the accuracy of damage classification.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference25 articles.

1. Port structures, wharves, quays, terminals, and mooring devices;Brunn;J. Coast. Res.,2005

2. Foundation damage of structures;Matsui;Soils Found.,1996

3. Analysis of the dynamic response of caisson breakwaters;Oumeraci;Coast. Eng.,1994

4. Numerical simulation of pounding damage to caisson under storm surge;Yu;E3S Web Conf.,2018

5. Limitations in structural identification of large constructed structures;Catbas;J. Struct. Eng.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3