On vibration-based damage detection by multivariate statistical techniques: Application to a long-span arch bridge

Author:

Comanducci Gabriele1,Magalhães Filipe2,Ubertini Filippo1,Cunha Álvaro2

Affiliation:

1. Dep. of Civil and Environmental Engineering, University of Perugia, Italy

2. CONSTRUCT/ViBest, Faculty of Engineering (FEUP), University of Porto, Portugal

Abstract

Structural health monitoring allows the automated condition assessment of civil infrastructure, leading to a cost-effective management of maintenance activities. However, there is still a debate in the literature about the effectiveness of available signal processing strategies to timely assess the health state of a structure. This paper is a contribution to this debate, by presenting the application of different vibration-based damage detection methods using up-to-date multivariate statistical analysis techniques applied to data acquired from a permanently monitored long-span arch bridge. Techniques based on dynamic regression models, linear and local principal component analysis, as well as on their combinations, including, in particular, the newly proposed method based on the combination of dynamic multiple linear regressions and local principal component analysis, and, finally, a method based on the recently proposed approach of cointegration, are considered. A first effort is made to formulate these methods within a unique mathematical framework, highlighting, in particular, the relevant parameters affecting their results and proposing objective criteria for their appropriate tuning and for choosing the length of the training period. Then, the considered damage detection methods are implemented and applied to field data, seeking for damage-sensitive features in the presence of variable environmental and operational conditions. The considered techniques are applied to time histories of identified modal frequencies of the bridge and their capability to reveal structural damage of varying severity is assessed using control charts. The case of an artificially imposed non-linear correlation between the features is also considered. The results provide, for the first time in the literature, an estimation of the minimum level of damage that can be realistically detected in the bridge using dynamic signatures and up-to-date signal processing algorithms, thus contributing to a more aware use of monitoring data and reliance over related health state assessment information.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3