Refinement and Validation of the Minimal Information Data-Modelling (MID) Method for Bridge Management

Author:

O’Higgins Connor1ORCID,Hester David1,McGetrick Patrick2,Ao Wai Kei3ORCID,Cross Elizabeth J.4

Affiliation:

1. School of Natural and Built Environment, Queen’s University Belfast, University Rd., Belfast BT7 1NN, UK

2. School of Engineering, National University of Ireland Galway, University Rd., H91 TK33 Galway, Ireland

3. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong

4. Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

Abstract

Various approaches have been proposed for bridge structural health monitoring. One of the earliest approaches proposed was tracking a bridge’s natural frequency over time to look for abnormal shifts in frequency that might indicate a change in stiffness. However, bridge frequencies change naturally as the structure’s temperature changes. Data models can be used to overcome this problem by predicting normal changes to a structure’s natural frequency and comparing it to the historical normal behaviour of the bridge and, therefore, identifying abnormal behaviour. Most of the proposed data modelling work has been from long-span bridges where you generally have large datasets to work with. A more limited body of research has been conducted where there is a sparse amount of data, but even this has only been demonstrated on single bridges. Therefore, the novelty of this work is that it expands on previous work using sparse instrumentation across a network of bridges. The data collected from four in-operation bridges were used to validate data models and test the capabilities of the data models across a range of bridge types/sizes. The MID approach was found to be able to detect an average frequency shift of 0.021 Hz across all of the data models. The significance of this demonstration across different bridge types is the practical utility of these data models to be used across entire bridge networks, enabling accurate and informed decision making in bridge maintenance and management.

Funder

Department for the Economy (DfE) Research Studentship and EPSRC

UK Engineering and Physical Sciences Research Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3