Affiliation:
1. Department of Disaster Mitigation for Structures, Tongji University, Shanghai, China
Abstract
Reinforced concrete (RC) structures are commonly strengthened using externally bonded fiber-reinforced polymer (FRP) sheets. The bond between the FRP and concrete is a crucial factor affecting the strengthening effect, and debonding along the FRP–concrete interface is usually accompanied by the fracture of the underlying concrete. Therefore, it is necessary to identify the interface damage of FRP-to-concrete joints and conduct mechanical analysis. However, debonding is invisible damage that occurs inside the underlying FRP layer, which makes damage detection more difficult. To this end, this study fuses a percussion method with a deep learning framework to address the detection of such invisible lesions. Meanwhile, the visualization study provides guidance for later maintenance work. To further illustrate the hazard of the identified lesions, three-dimensional reconstruction for finite element modeling (FEM) with detected damage information based on percussion is proposed to elucidate the mechanical degradation caused by the fracture of underlying concrete. Lastly, the results of this study demonstrate that the detection, visualization, and FEM reconstruction of FRP–concrete interface damage using percussion signals has considerable application potential and is worthy of further study.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
China Postdoctoral Science Foundation
Science and Technology Commission of Shanghai Municipality
Subject
Mechanical Engineering,Biophysics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献