Affiliation:
1. School of Mechanical Engineering, Southeast University, Nanjing, PR China
Abstract
Blade crack detection is the key to ensuring the smooth and safe operation of centrifugal fans. However, a single vibration signal is difficult to fully reflect the health state of the blade and is susceptible to noise interference in the industrial field, which makes it difficult to detect blade cracks. Therefore, a two-level fusion model of vibro-acoustic signals is proposed for blade crack detection of centrifugal fans. Firstly, based on the designed correlated degree of cyclostationarity fusion rule, the data-level fusion of multi-source homogeneous vibro-acoustic signals is completed, and the fused signals with more obvious fault features are obtained. Then, a one-dimensional feature pyramid network is proposed to extract the vibro-acoustic features and generate initial decisions. Finally, a basic probability assignment acquisition method based on the precision of the initial classifiers and a weighted average method based on the Pignistic probability distance are proposed to minimize the conflict between multi-source evidence, and the Dempster-Shafer evidence theory method is used to obtain the blade crack detection results. The effectiveness of the proposed method is verified by the centrifugal fan blade crack detection experiments. Compared with other related methods, the proposed method has better detection performance and stronger robustness.
Funder
Postgraduate Research & Practice Innovation Program of Jiangsu Province
National Natural Science Foundation of China