A new acoustic emission damage localization method using synchrosqueezed wavelet transforms picker and time-order method

Author:

Wang Jingkai1,Huo Linsheng1ORCID,Liu Chunguang1,Song Gangbing2ORCID

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China

2. Smart Materials and Structures Laboratory, Department of Mechanical Engineering, University of Houston, Houston, TX, USA

Abstract

Acoustic emission technique, as a passive structural health monitoring technique, has been widely applied to detecting and locating the structural damage. The time difference of arrival and the wave velocity are the key factors in most of the acoustic emission localization methods, and the accuracy of these two factors will affect the accuracy of damage localization. To improve the accuracy of damage localization, this article proposes a new damage localization method based on the synchrosqueezed wavelet transform picker and the time-order method. The synchrosqueezed wavelet transform picker, which picks the time–frequency similar point based on time–frequency similarity theory in the low-noise interval of time–frequency matrix, can improve the accuracy and robustness of calculating time difference of arrival. Meanwhile, the time-order method not only measures the wave velocity in real time but also reduces the computing time by appropriately arranging the distribution of acoustic emission sensors. These advantages improve the accuracy and robustness of acoustic emission localization, which was verified by experiments. Furthermore, the new localization method was employed to study the energy distribution in the embedded section of steel bar during the pull-out test of steel bar and concrete, and the results show the types of resistance between steel bar and concrete.

Funder

Natural Science Foundation of Jiangsu Province of China

Major State Basic Research Development Program of China

Fundamental Research Funds for the Central Universities of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3