A methodology for long-term offshore structural health monitoring using stand-alone GNSS: case study in the Gulf of Mexico

Author:

Wang Guoquan1ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA

Abstract

This article presents a robust methodology for long-term offshore structural health monitoring (SHM) using the Global Navigation Satellite Systems (GNSS). The methodology relies on recently developed regional reference frames and single-receiver phase-ambiguity-fixed Precise Point Positioning techniques. The stable Gulf of Mexico Reference Frame 2020 (GOM20) provides a robust and consistent reference system for long-term offshore SHM in the Gulf of Mexico (GOM). Continuous GNSS observations (DEV1, 2010–2020) on a fixed platform in the Eugene Island 330 oil field are used to illustrate the methodology. The platform was installed in 1982 in 82-m water about 130 km away from the Mississippi Delta coastline. The major monitoring items include horizontal movements, seafloor subsidence, structure submergence, and seasonal oscillations. The stand-alone GNSS monitoring achieves 3- to 4-mm root-mean-square accuracy in the horizontal direction and 7 mm in the vertical direction for daily positions in the GOM region. According to this study, the GNSS antenna (DEV1) has moved 6 cm toward the northeast with respect to GOM20 since 2010; the ongoing structure submergence rate in the Eugene Island 330 oil field area is approximately 15 mm/year, a combination of seafloor subsidence (12 mm/year) and sea-level rise (2.6 mm/year) with respect to GOM20. The submergence in the future 40 years (2021–2060) would be greater than 0.6 m, likely between 0.8 and 1.0 m, but is unlikely to exceed 1.3 m. The peak-to-trough amplitudes of the seasonal movements at the top of the platform are below 5 mm in all three directions, comparable with the seasonal movements recorded by onshore GNSS in the Louisiana coastal region. The methodology introduced in this article can be applied to SHM in other offshore regions where stable regional reference frames are available.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3