Non-contact impact load identification based on intelligent visual sensing technology

Author:

Zhang Shengfei1ORCID,Ni Pinghe1ORCID,Wen Jianian1,Han Qiang1ORCID,Du Xiuli1,Xu Kun1

Affiliation:

1. National Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology, Beijing, China

Abstract

Accurate identification of impact loads is vital for structural assessment and design. Traditional methods rely on complex equipment, such as accelerometers or strain gauge, which can be expensive and prone to failure. This study introduces a non-contact intelligent identification approach incorporating visual sensing technology, providing a convenient means to identify impact loads. Numerical simulations explore the differences in identifying impact forces through acceleration and displacement responses, particularly by considering such variables as measurement noise and number of measurement points. A meticulously designed experiment verified the feasibility of the proposed method for measuring the displacement and velocity of rapidly moving targets, and evaluated its performance in terms of accuracy. A series of impact loading experiments were conducted on a simply supported girder bridge model to validate the effectiveness of the proposed impact force identification method. Results indicate strong agreement between displacement response measurements and percentile meters. The proposed non-contact method accurately identifies single or continuous impact loads, with a minimum peak relative error of 0.2%. This study represents a pioneering application of intelligent visual sensing technology in the field of impact load identification. Moreover, the current research introduces a novel approach to address the challenges faced by conventional methods in identifying impact loads. Future research can leverage the groundwork laid by this study to further optimize and expand the proposed method, enhancing its capabilities and fully harnessing its potential to offer advanced solutions in structural health monitoring.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3