Nondestructive millimeter-scale void detection for thick steel-shell–concrete interface of immersed tube tunnel: case study

Author:

Li Songhui1,Liu Guoqing2,Zhang Yan1ORCID,Zhao Hongbo2,Feng Shaokong3,Wu Fanzi2

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China

2. Nanjing Hydraulic Research Institute, Nanjing, China

3. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai, China

Abstract

The structural form of sandwich-structured immersed tunnel (SSIT) can be complex. During the casting of self-compacting concrete, creating void defects between the steel shell and concrete interface is not difficult, which can adversely affect the overall safety and service life of the structure. However, detecting millimeter-scale voids covered by a thick steel plate is a technical challenge for current engineering industries. In this study, we proposed a nondestructive millimeter-scale void detection method for SSITs with thick steel shells by combining impact imaging and neutron methods. First, based on the near-source wavefield theory and count rate of thermal neutrons, the void area and depth calculation methods were derived theoretically, and then the coupling detection method and grading criteria for void severity were proposed. Additionally, the void detection performance was validated for a full-scale SSIT model test by blind detection. Finally, the proposed method was applied to the SSIT of the Shenzhen–Zhongshan bridge. The results showed that the proposed method could quantitatively determine the location and distribution pattern of a void; however, it could not accurately determine the void depth. In contrast, the neutron method could accurately calculate the void depth but had a large minimum detectable unit area. The proposed method could effectively compensate for the limitations of both methods. Statistically, the coincidence rate of the model test was 95%, 89%, and 87.5% for the void location, void area, and void depth, respectively, when the error range was ±2 mm. Using this method, 30 tubes in the Shenzhen–Zhongshan bridge were inspected, and by summarizing the void law, suggestions to improve the casting process were proposed, such as adjusting the casting speed. Meanwhile, the void probability decreased significantly. The proposed method provides an important basis for high-quality construction in SSIT projects.

Funder

Five Talents Program of IWHR

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin

R&D Projects in Key Areas of Guangdong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3