Casting Simulation of Large-Volume Fluid Cementitious Materials: Effect of Material Properties and Casting Parameters

Author:

Wang Junkai1,Song Shenyou2,Xu Wen13,Zhang Lizhi1,Xu Guodong4

Affiliation:

1. Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

2. Shenzhen-Zhongshan Link Administration Center, Zhongshan 528400, China

3. State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210008, China

4. Jiangsu Research Institute of Building Science Co., Ltd., Nanjing 210008, China

Abstract

The increasing pressure of traffic congestion on socio-economic development has made the construction of cross-water transportation ever more crucial. The immersed tunnel method is among the most extensively employed. However, a critical challenge of the immersed tunnel technique is to ensure the compactness and stability of concrete during the casting process. Conventional laboratory methods face challenges in achieving large-volume concrete casting, resulting in the notable waste of human and material resources. Hence, this study employs a simulation approach to investigate the casting parameters and the fresh properties of concrete, exploring their impacts on concrete stability and compactness. The results indicate that when the surface tension of concrete exceeds 0.03 N/m, and the yield stress and plastic viscosity are 50 Pa and 50 Pa·s, respectively, the concrete exhibits excellent casting compactness. A design incorporating three large and six small outlets, paired with a casting speed of 3 cm/s, achieves superior compactness. Additionally, when the yield stress of concrete exceeds 3 Pa, there is no segregation of aggregates. In cases where segregation occurs, the thixotropic property of the cement paste contributes to a significant reduction in the velocity of aggregate segregation.

Funder

Special Research Project on Haitai Yangtze River Tunnel

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3