A spherical smart aggregate sensor based electro-mechanical impedance method for quantitative damage evaluation of concrete

Author:

Zhao Shaoyu12ORCID,Fan Shuli1,Yang Jie3,Kitipornchai Sritawat2

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China

2. School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia

3. School of Engineering, RMIT University, Melbourne, VIC, Australia

Abstract

In this study, the concrete damage induced by compression is evaluated quantitatively using spherical smart aggregate sensor based on electro-mechanical impedance method. The sensitivity of the spherical smart aggregate sensor embedded in concrete cubes is investigated by comparing the electrical signals recorded during the compressive process with those of the smart aggregate sensor embedded in concrete cubes. Furthermore, the finite element model of concrete cube with an embedded spherical smart aggregate sensor is developed to simulate the concrete compressive tests. The concrete damaged plasticity constitutive model is utilized to simulate the concrete damage process. The numerical model is verified with the experimentally measured compressive test results. Finally, the damage volume ratio is presented to quantify the damage level of concrete based on the numerical model. The relationship between the root mean square deviation index of the conductance signatures obtained from experiments and the damage volume ratio computed by numerical simulation is established to quantify the concrete damage level. The results show that the spherical smart aggregate sensor is more sensitive than the smart aggregate sensor in monitoring the three-dimensional concrete structures. The proposed empirical fitting curve can effectively evaluate the concrete damage level quantitatively.

Funder

major state basic research development program of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3