Temperature compensation to guided wave-based monitoring of bolt loosening using an attention-based multi-task network

Author:

Du Fei12ORCID,Wu Shiwei1,Xing Sisi13,Xu Chao12ORCID,Su Zhongqing4ORCID

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi’an, China

2. Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, China

3. Xian Aerospace Propulsion Institute, Xi’an, China

4. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region

Abstract

Online monitoring of bolt torque is critical to ensure the safe operation of bolted structures. Guided waves have been intensively explored for bolt loosening monitoring. Nevertheless, guided waves are excessively sensitive to fluctuation of ambient temperature. As a result of the complexity of wave transmitting across a bolted joint, it is highly challenging to compensate for the effect of temperature. To this end, an attention-based multi-task network is developed towards accurate detection of bolt loosening in multi-bolt connections over a wide range of temperature variation. By integrating improved attention gate modules in a modified U-Net architecture, an attention U-Net is configured for temperature compensation. A two-layer convolutional subnetwork is connected in series behind the attention U-Net to identify bolt loosening. Experimental validation is carried out on a bolt jointed lap plate simulating a real aircraft structure. The results have proved that the developed multi-task network achieves temperature compensation and accurate bolt loosening identification. To further understand the multi-task network, the Integrated Gradients method and a simplified structure of the bolt lap plate are used to interpret the developed network. It is proved that the A0 mode is sensitive to bolt loosening, while the S0 mode is not.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3