1D-TICapsNet: An audio signal processing algorithm for bolt early looseness detection

Author:

Wang Furui1ORCID,Song Gangbing1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Houston, Houston, TX, USA

Abstract

Recently, for bolt looseness detection, percussion-based methods have attracted more attention due to their advantages of eliminating contact sensors. The core issue of percussion-based methods is audio signal processing to characterize different bolt preloads, while current percussion-based methods all depend on machine learning–based techniques that require hand-crafted features and overlook bolt looseness at the incipient stage. Thus, in this article, the main contribution is that we propose a novel one-dimensional training interference capsule neural network (1D-TICapsNet) to process and classify percussion-induced sound signals, thus achieving bolt early looseness detection. First, compared to machine learning–based techniques, 1D-TICapsNet can fuse feature extraction and classification in one frame to achieve better performance. In addition, due to two tricks (i.e. training interference), including wider kernels in the first convolutional layer and the targeted dropout technique, our proposed 1D-TICapsNet outperforms several state-of-the-art deep learning techniques in terms of classification accuracy, computational costs, and the denoising capacity. We call these two tricks as “training interference” since they work during training procedure. Finally, we confirm the effectiveness and superiorities of 1D-TICapsNet via experiments. Considering the efficacy of 1D-TICapsNet, we can expect its real-world applications on bolt early looseness detection and other classification of one-dimensional signals.

Funder

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3