Hybrid artificial intelligence-based inference models for accurately predicting dam body displacements: A case study of the Fei Tsui dam

Author:

Cheng Min-Yuan1,Cao Minh-Tu2ORCID,Huang I-Feng1

Affiliation:

1. Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

2. Deptartment and Institute of Civil Engineering and Environmental Informatics, Minghsin University of Science and Technology, Xinfeng Hsinchu, Taiwan

Abstract

Surveillance is a critical activity in monitoring the operation condition and safety of dams. This study reviewed the historical monitoring data of the Fei Tsui dam to determine possible influential factors for the dam body displacement and then evaluated the influencing degree of these factors by using correlation analysis. Thus, the key influential factors were identified objectively and further chosen as the input variables for numerous artificial intelligence (AI)-based inference models, including single machine learning techniques (support vector machine (SVM), artificial neural networks) and hybrid AI models. The models were trained and tested with 4722 real data retrieved in 11 years from the monitoring devices installed on elements of the dam, and then generated their respective inferred dam body displacement values. The results revealed that the adaptive time-dependent evolutionary least squares SVM model had the greatest performance by providing the lowest values of prediction errors in terms of mean absolute percentage error (MAPE = 8.14%), root mean square error (RMSE = 1.08 cm), and coefficient of determination (R = 0.993). The analysis results endorsed that the hybrid AI model could be an efficient tool to early produce accurate warnings of the dam displacements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3