An Automated Framework for the Health Monitoring of Dams Using Deep Learning Algorithms and Numerical Methods

Author:

Chao Yang1ORCID,Lin Chaoning1ORCID,Li Tongchun1,Qi Huijun1ORCID,Li Dongming1,Chen Siyu2ORCID

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

2. Dam Safety Management Department, Nanjing Hydraulic Research Institute (NHRI), Nanjing 210029, China

Abstract

Aiming to investigate the problem that dam-monitoring data are difficult to analyze in a timely and accurate automated manner, in this paper, we propose an automated framework for dam health monitoring based on data microservices. The framework consists of structural components, monitoring sensors, and a digital virtual model, which is a hybrid of a finite element (FE) model, a geometric model, a mathematical model, and a deep learning algorithm. Long short-term memory (LSTM) was employed to accurately fit and predict the monitoring data, while dynamic inversion and simulation were used to calibrate and update the data in the hybrid model. The automated tool enables systematic maintenance and management, minimizing errors that are commonly associated with manual visual inspections of structures. The effectiveness of the framework was successfully validated in the safety monitoring and management of a practical dam project, in which the hybrid model improved the prediction accuracy of monitored data, with a maximum absolute error of 0.35 mm. The proposed method can be considered user-friendly and cost-effective, which improves the operational and maintenance efficiency of the project with practical significance.

Funder

the National Key Research and Development Plan of China

National Nature Science Foundation of China

the Open Research Fund of Key Laboratory of Reservoir and Dam Safety Ministry of Water Resources

the Science and Technology Project of Power Construction Corporation of China

the Excellent Postdoctoral Program of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3