Optimum wavelet selection for nonparametric analysis toward structural health monitoring for processing big data from sensor network: A comparative study

Author:

Silik Ahmed12,Noori Mohammad3ORCID,Altabey Wael A14ORCID,Dang Ji5,Ghiasi Ramin1,Wu Zhishen1

Affiliation:

1. International Institute for Urban Systems Engineering, Southeast University, Nanjing, China

2. Department of Civil Engineering, Nyala University, Nyala, Sudan

3. Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA

4. Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt

5. Civil and Environmental Engineering, Saitama University, Saitama, Japan

Abstract

A critical problem encountered in structural health monitoring of civil engineering structures, and other structures such as mechanical or aircraft structures, is how to convincingly analyze the nonstationary data that is coming online, how to reduce the high-dimensional features, and how to extract informative features associated with damage to infer structural conditions. Wavelet transform among other techniques has proven to be an effective technique for processing and analyzing nonstationary data due to its unique characteristics. However, the biggest challenge frequently encountered in assuring the effectiveness of wavelet transform in analyzing massive nonstationary data from civil engineering structures, and in structural health diagnosis, is how to select the right wavelet. The question of which wavelet function is appropriate for processing and analyzing the nonstationary data in civil engineering structures has not been clearly addressed, and no clear guidelines or rules have been reported in the literature to show how the right wavelet is chosen. Therefore, this study aims to address an important question in this regard by proposing a new framework for choosing a proper wavelet that can be customized for massive nonstationary data analysis, disturbances separation, and extraction of informative features associated with damage. The proposed method takes into account data type, data and wavelet characteristics, similarity, sharing information, and data recovery accuracy. The novelty of this study lies in integrating multi-criteria which are associated directly with features that correlated well with change in structures due to damage, including common criteria such as energy, entropy, linear correlation index, and variance. Also, it introduces and considers new proposed measures, such as wavelet-based nonlinear correlation such as cosh spectral distance and mutual information, wavelet-based energy fluctuation, measures-based recovery accuracy, such as sensitive feature extraction, noise reduction, and others to evaluate various base wavelets’ function capabilities for appropriate decomposition and reconstruction of structural dynamic responses. The proposed method is verified by experimental and simulated data. The results revealed that the proposed method has a satisfactory performance for base wavelet selection and the small order of Daubechies and Symlet provide the best results, especially order 3. The idea behind our proposed framework can be applied to other structural applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3