Uncertainty Handling in Structural Damage Detection via Non-Probabilistic Meta-Models and Interval Mathematics, a Data-Analytics Approach

Author:

Ghiasi RaminORCID,Noori MohammadORCID,Altabey Wael A.ORCID,Silik Ahmed,Wang TianyuORCID,Wu Zhishen

Abstract

Recent advancements in sensor technology have resulted in the collection of massive amounts of measured data from the structures that are being monitored. However, these data include inherent measurement errors that often cause the assessment of quantitative damage to be ill-conditioned. Attempts to incorporate a probabilistic method into a model have provided promising solutions to this problem by considering the uncertainties as random variables, mostly modeled with Gaussian probability distribution. However, the success of probabilistic methods is limited due the lack of adequate information required to obtain an unbiased probabilistic distribution of uncertainties. Moreover, the probabilistic surrogate models involve complicated and expensive computations, especially when generating output data. In this study, a non-probabilistic surrogate model based on wavelet weighted least squares support vector machine (WWLS-SVM) is proposed to address the problem of uncertainty in vibration-based damage detection. The input data for WWLS-SVM consists of selected wavelet packet decomposition (WPD) features of the structural response signals, and the output is the Young’s modulus of structural elements. This method calculates the changes in the lower and upper boundaries of Young’s modulus based on an interval analysis method. Considering the uncertainties in the input parameters, the surrogate model is used to predict this interval-bound output. The proposed approach is applied to detect simulated damage in the four-story benchmark structure of the IASC-ASCE SHM group. The results show that the performance of the proposed method is superior to that of the direct finite element model in the uncertainty-based damage detection of structures and requires less computational effort.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3