An enhanced topological analysis for Lamb waves based SHM methods

Author:

Lejeune Arthur12ORCID,Hascoët Nicolas1,Rébillat Marc1ORCID,Monteiro Eric1,Mechbal Nazih1

Affiliation:

1. PIMM Laboratory, Arts et Métiers Institute of Technology, CNRS, CNAM, HESAM University, Paris, France

2. Safran Composites, A Technology Platform of Safran Tech, Itteville, France

Abstract

Topological data analysis (TDA) is a powerful and promising tool for data analysis, but yet not exploited enough. It is a multidimensional method which can extract the topological features contained in a given dataset. An original TDA-based method allowing to monitor the health of structures when equipped with piezoelectric transducers (PZTs) is introduced here. Using a Lamb wave based Structural Health Monitoring (SHM) approach, it is shown that with specific pre-processing of the measured time-series data, the TDA (persistent homology) for damage detection and classification can be greatly improved. The TDA tool is first applied directly in a traditional manner in order to use homology classes to assess damage. After that, another method based on slicing the temporal data is developed to improve the persistence homology perception and to leverage topological descriptors to discriminate different damages. The dataset used to apply both methods comes from experimental campaigns performed on aeronautical composite plates with embedded PZTs where different damage types have been investigated such as delamination, impacts and stiffness reduction. The proposed approach enables to consider a priori physical information and provides a better way to classify damages than the traditional TDA approach. In summary, this article demonstrates that manipulating the topological the features of PZTs time-series signals using TDA provides an efficient mean to separate and classify the damage natures and opens the way for further developments on the use of TDA in SHM.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3