Analysis of failure in concrete and reinforced-concrete beams for the smart aggregate–based monitoring system

Author:

Noori Hoshyar Azadeh1ORCID,Samali Bijan1,Liyanapathirana Ranjith2,Taghavipour Saber1

Affiliation:

1. Centre for Infrastructure Engineering (CIE), Western Sydney University, Penrith, NSW, Australia

2. School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, Australia

Abstract

Monitoring of structures and defining the severity of damages that occur under loading are essential in practical applications of civil infrastructure. In this article, we analyze failure using a smart aggregate sensor–based approach. The signals captured by smart aggregate sensors mounted on the structure under loading are de-noised using wavelet de-noising technique to prevent misdirection of the event interpretation of what is happening in the material. The performance of different mother wavelets on the de-noising process was investigated and analyzed. The objective is to identify the optimal mother wavelet for assessing and potentially reducing the effects of existing noise on signal properties for structural damage detection. In addition, we propose two innovative damage indices, entropy-based dispersion and entropy-based beta, for diagnostic purposes. The proposed entropy-based dispersion damage index is based on the modified wavelet packet tree and root mean square deviation, whereas the entropy-based beta damage index is based on the modified wavelet packet tree and slope of linear regression (beta). In both damage indices, the modified wavelet packet tree uses entropy as a high-level feature. Theoretical and experimental analyses are derived by computing indices on smart aggregate–based sensor data for concrete and reinforced-concrete beams. Validity assessment of the proposed indices was addressed through a comparative analysis with root mean square deviation damage index (benchmark) and the loading history. The proposed indices recognized the cracks faster than other measures and well before major cracking incurs in the structure. This article is expected to be beneficial for smart aggregate–based structural health monitoring applications particularly when damages occurred under loading.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3