Actuating Performance Analysis of a New Smart Aggregate Using Piezoceramic Stack

Author:

Lu GuangtaoORCID,Wang Qi,Song Huijun,Liu Zhe,Wang Tao

Abstract

A new type of smart aggregate using piezoceramic stack (SAPS) was developed for improved output, as compared with a conventional smart aggregate with a single piezoceramic patch. Due to the better output, the proposed smart aggregate is preferred where the attenuating effect is strong. In this research, lead zirconate titanate (PZT) material in the form of discs was used due to its strong piezoelectric performance. For analysis, the proposed SAPS was simplified to a one-dimensional axial model to investigate its electromechanical and displacement output characteristics, and an experimental setup was designed to verify the simplified model. Moreover, the influence of the structural parameters, including the number of the PZT discs, the dimensions of the PZT disc, protective shell, and copper lids, and the elastic modulus of the epoxy on the electromechanical and displacement output performance of SAPSs, were numerically studied by using the one-dimensional axial model. The numerical analysis results indicate that the structural dimension of the PZT discs has a greater effect on the electromechanical performance of SAPSs than that of the protective shell and copper lids. Moreover, the results show that the number of the PZT discs and the outer diameter of the protective shell have a much greater influence on the displacement output of SAPSs than other parameters. The analysis results of SAPSs with different elastic moduli of the epoxy demonstrate that the SAPSs’ first resonance frequency, first electromechanical coupling factor, and displacement output change less than 1.79% when the epoxy’s elastic modulus changes from 1.28 GPa to 5.12 GPa, which indicates that the elastic modulus of the epoxy has a limited influence on the property of SAPSs, and it will be helpful for their fabrication. This study provides an approach to increasing the output of SAPS and also develops a method to design the structure of SAPSs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3