Damage identification of thin plate-like structures combining improved singular spectrum analysis and multiscale cross-sample entropy (ISSA-MCSEn)

Author:

Wang Jiacheng,Lu GuangtaoORCID,Song Huijun,Wang TaoORCID,Yang Dan

Abstract

Abstract In this paper, a new method integrating the improved singular spectrum analysis and the multiscale cross-sample entropy Improved Singular Spectrum Analysis and Multiscale Cross-Sample Entropy, (ISSA-MCSEn) is developed to identify the size of early damages in thin plate-like structures. In the algorithm, with the help of improved singular spectrum analysis (ISSA), the principal components relevant to the reference and damage-induced signals are successfully extracted, and then the components related to the damage are reconstructed for damage size detection. Lastly, the multiscale cross-sample entropy (MCSEn) of the reconstructed signal is computed as a new damage index to evaluate the size of the damage. To validate the proposed ISSA-MCSEn algorithm, two different experiments are conducted on aluminum and composite fiber reinforced polymer (CFRP) plates to detect simulated crack and through-hole, respectively. Comparative performance analysis of ISSA and singular spectrum analysis (SSA) demonstrates that the total increment of the normalized MCSEn by using ISSA is 30%–81% while the one by using SSA is only 6.5%–9%, which demonstrates that the performance of the proposed ISSA is much better than SSA. The experimental results also show that the average of the normalized MCSEn of the proposed algorithm increases by over 77% and 28% as the size of the two damages in CFRP and aluminum plates changes from 0 to 8 mm and 0 to 1.2 mm, respectively. Moreover, the relationship between the normalized MCSEn and damages’ size is well linear, and the Pearson’s coefficient of their fitting curves is more than 0.99, which demonstrates that this linear relationship can be employed for damage size detection in both CRFP and aluminum plates. The linear relationship between the damage size and normalized MCSEn is used for damage detection, and the relative error between the actual and detected size is 1.64%–6.92%. In addition, the performance comparison of ISSA-MCSEn and SSA-FuzzyEn shows that the total increment of the ISSA-MCSEn algorithm due to the damage is 30%–81% while the one of SSA-FuzzyEn is only 4%–15%, which indicates that the proposed ISSA-MCSEn is more sensitive to the damage than SSA-FuzzyEn and it is more suitable for detection of small-size damages.

Funder

National Natural Science Foundation of China

Hubei Key Laboratory of Disaster Prevention and Mitigation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3