Multi-level feature fusion in densely connected deep-learning architecture and depth-first search for crack segmentation on images collected with smartphones

Author:

Mei Qipei1,Gül Mustafa1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada

Abstract

Cracks are important signs of degradation in existing infrastructure systems. Automatic crack detection and segmentation plays a key role in developing smart infrastructure systems. However, this field has been challenging over the last decades due to irregular shape of the cracks and complex illumination conditions. This article proposes a novel deep-learning architecture for crack segmentation at pixel-level. In this architecture, one convolutional layer is densely connected to multiple other layers in a feed-forward fashion. Max pooling layers are used to reduce the dimensions of the features, and transposed convolution layers are used for multi-level feature fusion. A depth-first search–based algorithm is applied as post-processing tool to remove isolated pixels and improve the accuracy. The method is tested on two previously published data sets. It can reach 92.02%, 91.13%, and 91.58% for the first data set, and 92.17%, 91.61%, and 91.89% for the second data set for precision, recall, and F1 score, respectively. The performance of the proposed method outperforms other state-of-the-art methods. At the end of the article, the influence of feature fusion methods and transfer learning are also discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3