Sparse Bayesian learning approach for propagation distance recognition and damage localization in plate-like structures using guided waves

Author:

Zhao Meijie123,Zhou Wensong123ORCID,Huang Yong123ORCID,Li Hui123ORCID

Affiliation:

1. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, China

2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China

3. School of Civil Engineering, Harbin Institute of Technology, Harbin, China

Abstract

In ultrasonic guided wave–based damage detection, the propagation distance recognition of wave packets is an essential step. However, it is difficult to perform direct distance extraction from guided wave signals since the multimode, mode conversion, and dispersion effects typically lead to wave packet overlapping and distortion. In addition, the identified damage location may be incorrect due to inevitable uncertainties in the procedure of propagation distance recognition and damage localization. Motivated by these difficulties, a novel two-stage approach for propagation distance recognition and damage localization is proposed based on sparse Bayesian learning framework. In the first stage, prior knowledge of a small number of wave packets contained in a signal is exploited to sparsely represent the guided wave signal and then the corresponding propagation distance and amplitude information of each wave packet can be obtained. In the next stage, only a small number of damages occurring in a structure are exploited and a vector consisting of the propagation distances extracted from the previous stage is used to match the atoms in a pre-defined over-complete distance dictionary matrix, to achieve our goal of localizing structural damage. Both procedures of the two stages are realized by the sparse Bayesian learning algorithm, which obtains the most probable value and the corresponding uncertainty. A sampling strategy is presented to transfer the uncertainty of the propagation distance recognition to the subsequent damage localization. Finally, the effectiveness of the proposed method is validated using numerical simulation and experimental investigation on aluminum plates. The proposed method is only valid for single damage localization in the present form, but it has the potential to be extended for multiple damage localization.

Funder

National Natural Science Foundation of China

national key research and development program of china stem cell and translational research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3