Effective pre-stress identification in steel strand based on ultrasonic guided wave and 1-dimensional convolutional neural network

Author:

Zhang Longguan1,Jia Junfeng1ORCID,Bai Yulei1,Du Xiuli1,Guo Binli2,Guo He3

Affiliation:

1. State Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology, Beijing, China

2. CCCC Infrastructure Maintenance Group Co., LTD., Beijing, China

3. CCCC Road & Bridge Inspection & Maintenance Co., LTD., Beijing, China

Abstract

The accurate assessment of the effective pre-stress in steel strands is a challenging task, and ultrasonic guided wave (UGW) technique has shown certain application prospects in this field. However, the existing UGW-based approaches require manual parameter extraction from signals in time domain or frequency domain, which is a cumbersome and time-consuming process, and pre-stress identification based on individual parameters may not be reasonable. This study proposes a framework for identifying effective pre-stress in steel strands based on UGW and one-dimensional convolutional neural network (1D-CNN), which does not require any parameter extraction operation and achieves high identification accuracy. The output features of various convolutional layers in 1D-CNN were downscaled and visualized, and the prediction results of 1D-CNN were compared with those of a support vector regression (SVR) model. Results show that with the deepening of the network, the correlation between output features of the convolutional layers and pre-stress values increases significantly, indicating that the 1D-CNN model is able to automatically extract features related to the variation of pre-stress. The pre-stress prediction accuracy using 1D-CNN is significantly higher than that using SVR, and the prediction error is within 3%. The proposed 1D-CNN model exhibits excellent noise-robustness, with the prediction error remaining within 10% even at the SNR level of −5 dB. Even after removing half of conditions in the training set, the proposed 1D-CNN model is still able to achieve accurate identification of effective pre-stress.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3