Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks

Author:

Lei Xiaoming1ORCID,Sun Limin12ORCID,Xia Ye1

Affiliation:

1. Department of Bridge Engineering, Tongji University, Shanghai, China

2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Abstract

In the application of structural health monitoring, the measured data might be temporarily or permanently lost due to sensor fault or transmission failure. The measured data with a high data loss ratio undermine its ability for modal identifications and structural condition evaluations. To reconstruct the lost data in the field of structural health monitoring, this study proposes a deep convolutional generative adversarial network which includes a generator with encoder–decoder structure and an adversarial discriminator. The proposed generative adversarial network model needs to understand the content of the complete signals, as well as produce realistic hypotheses for the lost signals. Given the data stably measured before the occurrence of data loss, the generator is trained to extract the features maintained in the data set and reconstruct lost signals using the responses of the remaining functional sensors alone. The discriminator feeds back the distinguished results to the generator to improve its reconstruction accuracy. When training the model, the reconstruction loss and the adversarial loss are employed to better handle the low-frequency features and high-frequency features of the signals. The effectiveness and efficiency of the proposed method are validated by two case studies. As the number of training epoch increases, the reconstructed signals learn the features from low-frequency to high-frequency, and the amplitude of the reconstructed signals gradually increases. It can be seen that the final reconstruction signals match well with the real signals in the time domain and frequency domain. To further demonstrate the applicability of the reconstructed signals in data analysis, the reconstructed acceleration data are used to accurately identify the modal parameters in the numerical case, and the vehicle-induced responses are precisely decomposed from the reconstructed strain data in the field case. Finally, the reconstruction capacity is also investigated with the different numbers of the faulted strain gauges.

Funder

China Scholarship Council

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3