Affiliation:
1. Department of Bridge Engineering, Tongji University, Shanghai, China
2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China
Abstract
In the application of structural health monitoring, the measured data might be temporarily or permanently lost due to sensor fault or transmission failure. The measured data with a high data loss ratio undermine its ability for modal identifications and structural condition evaluations. To reconstruct the lost data in the field of structural health monitoring, this study proposes a deep convolutional generative adversarial network which includes a generator with encoder–decoder structure and an adversarial discriminator. The proposed generative adversarial network model needs to understand the content of the complete signals, as well as produce realistic hypotheses for the lost signals. Given the data stably measured before the occurrence of data loss, the generator is trained to extract the features maintained in the data set and reconstruct lost signals using the responses of the remaining functional sensors alone. The discriminator feeds back the distinguished results to the generator to improve its reconstruction accuracy. When training the model, the reconstruction loss and the adversarial loss are employed to better handle the low-frequency features and high-frequency features of the signals. The effectiveness and efficiency of the proposed method are validated by two case studies. As the number of training epoch increases, the reconstructed signals learn the features from low-frequency to high-frequency, and the amplitude of the reconstructed signals gradually increases. It can be seen that the final reconstruction signals match well with the real signals in the time domain and frequency domain. To further demonstrate the applicability of the reconstructed signals in data analysis, the reconstructed acceleration data are used to accurately identify the modal parameters in the numerical case, and the vehicle-induced responses are precisely decomposed from the reconstructed strain data in the field case. Finally, the reconstruction capacity is also investigated with the different numbers of the faulted strain gauges.
Funder
China Scholarship Council
Science and Technology Commission of Shanghai Municipality
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Mechanical Engineering,Biophysics
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献