Bridge condition monitoring under moving loads using two sensor measurements

Author:

Nie Zhenhua12ORCID,Lin Jun1,Li Jun3ORCID,Hao Hong3,Ma Hongwei24

Affiliation:

1. School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China

2. The Key Laboratory of Disaster Forecast and Control in Engineering, Ministry of Education of China, Guangzhou, China

3. Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, Australia

4. Dongguan University of Technology, Dongguan, China

Abstract

A novel damage detection approach using only two sensors to detect the damage in beam bridges subjected to a moving vehicle is proposed in this article. In this approach, a moving mass is considered representing a vehicle moving across the bridge, and structural vibration responses at two locations are measured from a pair of sensors. A moving window is defined with a certain length determined by the sampling frequency and the fundamental frequency of the measured responses. The windowed pair time series extracted from these two measured responses are used to calculate the cross-correlation, which is used to define the local damage index. A simply supported beam bridge subjected to a moving mass is simulated to demonstrate the effectiveness and accuracy of the proposed approach. Numerical results indicate that the proposed approach can accurately identify the single and multiple damages using both displacement and acceleration responses, even when the responses are smeared with a significant noise. This indicates a good robustness to the noise effect. Experimental verifications on a laboratory beam bridge model demonstrate that the proposed approach can successfully identify the damage location using different selections of sensor pairs. Both the numerical and experimental results demonstrate that the new damage index is a good candidate for structural damage detection with very limited measurement information.

Funder

The Guangzhou Science and Technology Planning Project

National Natural Science Foundation of China

Innovation and Cultivation Fund of Central Colleges and Universities of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3