A statistics and optimization-based approach for crack parameter identification in curved beams

Author:

Dey Palash1,Talukdar Sudip1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, India

Abstract

This article presents a study for detecting crack parameters (crack location and crack-depth ratio) in horizontally curved thin-walled channel section beams utilizing only dynamic information from a post-damage event based on combined statistical and optimization tools. A combined response surface methodology and genetic algorithm have been utilized in the present research work. Finite element computations based on design of experiment have been used in order to obtain the coefficients of a second-order polynomial model for the response surface function. Genetic algorithm is then used as a searching tool to determine the optimum parameters by minimizing an objective function which is formed as the root mean square of the errors between the computed responses from response surface functions and measured responses. Two cases of different subtended central angles are considered to illustrate the approach. Each case required 18 laboratory experiments to provide measured input to the proposed integrated approach. It was found that large variation can occur in the calculation of natural frequencies of thin-walled beams, when the effect of warping stiffness is neglected in mathematical model. This study reveals that the precision of the localization and quantification of cracks are dependent on subtended angle. The present method has great potential in crack detection as it does not require the response of an uncracked beam as baseline criteria.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3