Damage detection and location using a simulated annealing-artificial hummingbird algorithm with an improved objective function

Author:

Chen Zhen123ORCID,Wang Yikai1,Zhang Kun1,Chan Tommy HT2ORCID,Wang Zhihao1

Affiliation:

1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, China

2. School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia

3. Key Laboratory of Damage Diagnosis for Engineering Structures of Hunan Province, Hunan University, Changsha, China

Abstract

Swarm intelligence algorithms and finite element model update technology are important issues in the field of structural damage detection. However, the complexity of engineering structural models normally leads to low computational efficiency and large detection errors in structural damage detection. To solve these problems, a simulated annealing-artificial hummingbird algorithm (SA-AHA) is proposed based on the artificial hummingbird algorithm (AHA). The Sobol sequence is used to improve the identification efficiency by optimizing the initial population distribution of the AHA. Then, the simulated annealing strategy is introduced to improve the detection accuracy by enhancing the global search ability of the AHA. In addition, a novel objective function is presented by combining modal flexibility residual, natural frequency residual, and trace sparse constraint of the structural model. Numerical simulations of a simply supported beam and a two-story rigid frame are carried out to verify the superiority of the proposed SA-AHA and the objective function. Simulation results demonstrate that the SA-AHA is better than the AHA in terms of damage computational efficiency and damage identification accuracy. Moreover, the new objective function can be more excellently applied to the SA-AHA than the previous one, which can be effectively used to locate and estimate the damage of the proposed SA-AHA in structure. Finally, experimental studies are carried out to verify the proposed method.

Funder

Open Fund for Key Laboratory of Damage Diagnosis for Engineering Structures of Hunan Province, Hunan University

Training Plan for Young Key Teachers in Colleges and Universities in Henan Province

National Natural Science Foundation of China

Key Scientific and Technological Research Projects of Henan Province, China

China Scholarship Council Fund as a Senior Research Fellow

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3