Denoising method of weak fault acoustic emission signal under strong background noise of engine based on autoencoder and wavelet packet decomposition

Author:

Liu Tong1,Jin YuCheng1,Wang Shuo1,Zheng QinWen1,Yang Guoan1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China

Abstract

The weak fault acoustic emission (AE) signals collected in the actual operating conditions of the engine are often submerged in the strong background noise. This paper proposes a denoising method of AE signals based on the combination of autoencoder and wavelet packet decomposition (AE-WPD) to address the above problem. Firstly, the wavelet packet is used to decompose engine background noise signals and noise-containing fault AE signals to enhance the local analysis capability of the autoencoder. Then, the dataset of each frequency band after decomposition is created. Among them, background noise signals are regarded as normal datasets. Noise-containing fault signals are treated as outlier datasets. The difference between each frequency band of background noise signals and noise-containing fault signals is analyzed. The autoencoder model is trained, validated and tested for effectiveness. In addition, a comparison is made with other commonly used denoising methods. Four types of evaluation indexes are introduced to quantitatively assess various methods. Finally, the real engine background noise signals with different signal-to-noise ratio (SNR) are added to the fault AE signals to verify the robustness of the proposed AE-WPD method. The experimental results show that the proposed AE-WPD method outperforms other denoising methods at different SNR. This lays the foundation for engine structural condition monitoring and subsequent fault identification and localization.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3