P300 intention recognition based on phase lag index (PLI)-rich-club brain functional network

Author:

Wang Zhongmin123ORCID,Xiang Leihua1ORCID,Zhang Rong123

Affiliation:

1. School of Computer Science and Technology, Xi’an University of Posts and Telecommunications 1 , Xi’an, Shaanxi 710121, China

2. Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications 2 , Xi’an, Shaanxi 710121, China

3. Xi’an Key Laboratory of Big Data and Intelligent Computing 3 , Xi’an 710121, Shaanxi, China

Abstract

Brain–computer interface (BCI) technology based on P300 signals has a broad application prospect in the assessment and diagnosis of clinical diseases and game control. The paper of selecting key electrodes to realize a wearable intention recognition system has become a hotspot for scholars at home and abroad. In this paper, based on the rich-club phenomenon that exists in the process of intention generation, a phase lag index (PLI)-rich-club-based intention recognition method for P300 is proposed. The rich-club structure is a network consisting of electrodes that are highly connected with other electrodes in the process of P300 generation. To construct the rich-club network, this paper uses PLI to construct the brain functional network, calculates rich-club coefficients of the network in the range of k degrees, initially identifies rich-club nodes based on the feature of node degree, and then performs a descending order of betweenness centrality and identifies the nodes with larger betweenness centrality as the specific rich-club nodes, extracts the non-linear features and frequency domain features of Rich-club nodes, and finally uses support vector machine for classification. The experimental results show that the range of rich-club coefficients is smaller with intent compared to that without intent. Validation was performed on the BCI Competition III dataset by reducing the number of channels to 17 and 16 for subject A and subject B, with recognition quasi-departure rates of 96.93% and 94.93%, respectively, and on the BCI Competition II dataset by reducing the number of channels to 17 for subjects, with a recognition accuracy of 95.50%.

Funder

The National Natural Science Foundation of China

Shaanxi Province Qinchuangyuan “Scientist + Engineer” Team Construction Project

Key Research and Development Plan of Shaanxi Province-General Projects

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3