Noncontact laser vibrometry-based fence-like arrays with wavefield filtering-assisted adaptive imaging algorithms for detecting multiple pits in a compact cluster

Author:

Tian Zhenhua1,Ma Zhaoyun2,Xiao Wenfeng2,Yu Lingyu2ORCID

Affiliation:

1. Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, USA

2. Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Abstract

Pitting corrosion presents challenges for ultrasonic nondestructive evaluation due to the small pit dimension. Few Lamb wave-based techniques have achieved the identification of individual pits as subwavelength wave scatterers that are densely packed in a small cluster. In this article, noncontact laser vibrometry-based fence-like arrays with wavefield filtering-assisted adaptive imaging algorithms are developed for detecting and identifying small pits in a cluster. Signals of back scattering waves induced by a cluster of subwavelength scatterers are acquired by noncontact laser Doppler vibrometry at sensing points and form a fence-like array surrounding the area of inspection. The signals are then processed by our array imaging algorithms to construct inspection images which take advantage of three techniques, including the wave mode and wave direction filters to extract single-mode back scattering Lamb waves induced by subwavelength scatterers, the pseudo-reversal propagation of back scattering waves to address the dispersion effect and improve the radial imaging resolution, and the adaptive weighting to improve the angular imaging resolution. Moreover, this work introduces the wave diffraction-related Rayleigh and Abbe limits that are conventionally used for characterizing optic lenses, for characterizing the resolution limit of Lamb wave-based arrays, and optimizing the array configuration. To validate our array imaging approach, a proof-of-concept experiment has been performed to detect a cluster of 3 × 3 pits with the pit diameter of 2 mm and the interval of 2 mm in a 3.2-mm thick aluminum plate; the experimental imaging result shows that our method can identify most pits except the one at the center of the pit cluster. We believe this study will benefit the design, characterization, and optimization of Lamb wave-based arrays for subwavelength resolution imaging and enable potential applications for the noncontact inspection of hidden pitting corrosion in civil, petrochemical, nuclear, and aerospace structures.

Funder

Mississippi State University

Department of Energy

University of South Carolina

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3