Application of Sensor Path Weighting RAPID Algorithm on Pitting Corrosion Monitoring of Aluminum Plate

Author:

Xu DuoORCID,Zhang WeifangORCID,Han Lu,Liu XuerongORCID,Hu WeiweiORCID

Abstract

Aluminum alloy is widely used in aerospace structures. However, it often suffers from a harsh corrosion environment, resulting in different damage such as pitting corrosion, which leads to a reduction in the service life of aerospace structures. In the present study, the pitting corrosion with a radius of 1 mm and a depth of 0.6 mm was manufactured using hydrofluoric (HF) acid on a 2024-T3 aluminum alloy plate (400 mm × 400 mm × 2 mm) to simulate the corrosion state of equipment. A signal acquisition system with a square sensor network of 12 piezoelectric transducers (PZTs) was established. The sensor path weighting reconstruction algorithm for the probabilistic inspection of defects (SPW-RAPID) is proposed based on corrosion damage characteristic parameters including signal correlation coefficient (SDC), root mean squared error (RMSE), and signal energy damage index (E1) to explore the monitoring efficacy of pitting corrosion. The sensor path weight w, which is the product of value coefficient a and impact factor l, is established to modify the corrosion damage characteristic parameters. The results indicate that the SPW-RAPID algorithm can improve the accuracy and clarity of image reconstruction results based on SDC, RMSE and E1, which can locate the pitting corrosion with a radius of 1 mm and a depth of 0.6 mm, and the positioning error is controlled within 0.1 mm. The research work may provide an available way to monitor tiny corrosion damage on an aluminum alloy structure.

Funder

Ministry of Industry and Information Technology of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3