Design and Optimization of High-Power and Low-Frequency Broadband Transducer with Giant Magnetostrictive Material

Author:

Yang Long,Wang WenjieORCID,Zhao Xu,Li Haojun,Xiang Yue

Abstract

The applications of sensors in the aerospace industry are mostly concentrated in the middle and high frequencies, and low-frequency sensors often face the problems of low power and short working bandwidth. A lightweight, thin, high-power, low-frequency broadband transducer based on giant magnetostrictive material is designed. The design and optimization processes of the core components are introduced and analyzed emphatically. The finite element simulation results are validated by the PSV-100 laser vibration meter. Three basic configurations of the work panel are proposed, and the optimal configuration is determined by modal, acoustic, and vibration coupling analyses. Compared with the original configuration, it is found that the lowest resonant frequency of the optimal configuration is reduced by 24.6% and the highest resonant frequency within 2000 Hz is 1744.9 Hz, which is 54.2% higher than that of the original configuration. This greatly improves the vibration power and operating frequency range of the transducer. Then, the honeycomb structure is innovatively applied to the work panel, and it is verified that the honeycomb structure has a great effect on the vibration performance of the work panel. By optimizing the size of the honeycomb structure, it is determined that the honeycomb structure can improve the vibration power of the work panel to its maximum value when the distance between the half-opposite sides of the hexagon is H = 3.5 mm. It can reduce the resonant frequency of the work panel; the lowest resonant frequency is reduced by 12.8%. At the same time, the application of a honeycomb panel structure can reduce the weight of the transducer.

Funder

the Key project of National Defense Foundation Enhancement Technology Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3