Affiliation:
1. College of Engineering, Ocean University of China, Qingdao, China
2. Naval Submarine Academy, Qingdao, China
3. Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
Abstract
Acoustic emission (AE) signals caused by valve leakage exhibit obvious nonlinearity and nonstationarity characteristics. Due to the limitations of traditional valve leakage diagnosis methods, it is difficult to distinguish between internal and external valve leakage failures effectively. Recognizing this challenge, a comprehensive valve leakage diagnosis method based on a multichannel fusion convolutional neural network (MCFCNN) is proposed. First, AE signals are converted from one-dimensional time-domain signals to two-dimensional time–frequency images by the time–frequency analysis method. Then, the time–frequency images are used as model inputs, and MCFCNN fuses the features of time–frequency images from two different position. Hence, a new comprehensive diagnosis method for the bi-sensor fusion contains the time–frequency information, modal information, and position information of valve leakage is proposed. Subsequently, the effectiveness of the proposed method was verified through valve leakage simulation experiments. Furthermore, in order to study the impact of modal information on identifying internal and external valve leakage faults, the fault prediction performance of MCFCNN was compared and analyzed using short-time Fourier transform (STFT) and time-reassigned synchrosqueezing transform (TSST). Finally, according to the needs of engineering practice, the impact of sampling length on different methods is studied. The results show that compared to STFT–MCFCNN, TSST–MCFCNN required a shorter sampling length with the same diagnostic accuracy, which means that the method proposed in this study can achieve faster response time for ball valve leakage under conventional leakage flow rates.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
Mechanical Engineering,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献