Modeling and Analysis of Acoustic Emission Generated by Fatigue Cracking

Author:

Mu WeileiORCID,Gao Yuqing,Wang Yuxue,Liu GuijieORCID,Hu Hao

Abstract

The acoustic emission (AE) method is a popular and well-developed method for passive structural health monitoring of metallic and composite structures. The current study focuses on the analysis of one of its processes, sound source or signal propagation. This paper discusses the principle of plate wave signal sensing using piezoelectric transducers, and derives an analytical expression for the response of piezoelectric transducers under the action of stress waves, to obtain an overall mathematical model of the acoustic emission signal from generation to reception. The acoustic emission caused by fatigue crack extension is simulated by a finite element method, and the actual acoustic emission signal is simulated by a pencil lead break experiment. The results predicted by the mathematical model are compared with the experimental results and the simulation results, respectively, and show good agreement. In addition, the presence of obvious S0 mode Lamb waves is observed in the simulation results and experimental results, which further verifies the correctness of the analytical model prediction.

Funder

National Natural Science Foundation of China

Key R&D Projects of Shandong Province

Natural Science Foundation of Shandong Province

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Modeling the Propagation of Elastic Ultrasonic Waves in Isotropic and Anisotropic Materials When Excited by Various Sources;Mater. Sci. Forum,2018

2. AE source localization technology;Nondestruct. Test.,2002

3. Research on the time difference of arrival location method of an acoustic emission source based on visible graph modelling;Insight,2018

4. Acoustic emission beamforming localisation approach based on particle swarm optimisation;Insight,2018

5. Fatigue life prediction based on crack propagation and acoustic emission count rates;J. Constr. Steel Res.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3