A novel transformer-based semantic segmentation framework for structural condition assessment

Author:

Wang Ruhua1,Shao Yanda2,Li Qilin2ORCID,Li Ling2,Li Jun1ORCID,Hao Hong1

Affiliation:

1. Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, Australia

2. Discipline of Computing, School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Bentley, WA, Australia

Abstract

Conventional structural health monitoring (SHM) evaluates the condition of civil structures by analyzing the data acquired by advanced sensors. The requirement of overinvestment in specialized equipment and labor for implementation prevents the traditional SHM from large-scale usage. On the other hand, computer vision techniques offer cost-effective solutions for SHM thanks to its inherent advantage in data acquirement and processing. More importantly, it has been demonstrated that these emerging solutions can produce reliable condition diagnoses for civil structures using pure image data. In this article, a novel transformer-based neural network is proposed for vision-based structural condition assessment which is formulated to a semantic segmentation problem. The network employs Swin Transformer as the backbone and MaskFormer as the overall architecture to recognize components (sleepers, slabs, columns, etc.) and damage (concrete damage, exposed rebar) of structures. Unlike the commonly used fully convolutional networks, the proposed model tackles semantic segmentation as a mask classification rather than a pixel classification problem. To deal with the lack of training data, an image data augmentation method called Copy-Paste is extended and applied for training data generation, resulting in an increase of around 40% data for component segmentation and 71% data for damage segmentation. Experimental validations on the Tokaido railway viaduct dataset show that the proposed approach is very accurate, achieving 97% and 90% mean Intersection Over Union for component and damage segmentation, outperforming the existing methods by a significant margin. The accurate segmentation results can provide meaningful information for downstream SHM tasks.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3