Unsupervised Vision‐Based Structural Anomaly Detection and Localization with Reverse Knowledge Distillation

Author:

Lei XiaomingORCID,Sun MengjinORCID,Zhao Rongxin,Wu Huayong,Zhou Zijie,Dong You,Sun Limin

Abstract

Most of vision‐based methods for structural damage detection rely on supervised learning, requiring a substantial number of labeled images for model training, which is labor‐intensive and time‐consuming. To address these challenges, this study introduces a vision‐based structural anomaly detection and localization approach using unsupervised learning and reverse knowledge distillation. The proposed model incorporates a teacher model, a student model, and a trainable one‐class bottleneck embedding module. The asymmetrical architecture of the teacher and student models forms an encoder‐decoder structure for parameter transfer and feature extraction. The student network receives a specific embedding from the teacher network as input and target, facilitating the recovery of multiscale information from the teacher. Training images only contain the undamaged structures, and the teacher model, a pretrained model, instructs the student model to remember their undamaged features to detect and localize damages in unseen testing images. Through experiments, including a comparison among five candidate backbones for pretrained teacher models based on the residual network and testing across various structural damage types, the optimal model is identified, demonstrating good performance in both anomaly detection and localization. Furthermore, the model’s generalization performance is thoroughly validated, confirming its efficacy across diverse scenarios.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3