Dynamical response identification of a class of nonlinear hysteretic systems

Author:

Carboni Biagio1ORCID,Lacarbonara Walter1,Brewick Patrick T2,Masri Sami F2

Affiliation:

1. Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy

2. Department of Civil & Environmental Engineering, University of Southern California, Los Angeles, CA, USA

Abstract

The experimental dynamical response of three types of nonlinear hysteretic systems is identified employing phenomenological models togheter with the Differential Evolutionary algorithm. The mass–spring–damper system is characterized by hysteretic restoring forces provided by assemblies of shape memory and steel wire ropes subject to flexure or coupled states of tension and flexure. The energy dissipation due to phase transformations and inter-wire friction and the stretching-induced geometric nonlinearities give rise to different shapes of hysteresis cycles. The mechanical device subject to strong seismic excitations is investigated in its ultimate limit state whereby inelastic strains are induced in the steel wires together with a global nonsymmetric response of the system. The targeted dynamical characterization of the hysteretic oscillator up to its ultimate limit state has a special meaning when the device is employed in the field of vibration control. The dynamical response is identified exploiting the measurements of the oscillating mass relative displacement and inertia force that must be balanced, at each time instant, by the overall restoring forces provided by the mechanism. The restoring force is assumed to be the sum of different contributions such as a cubic nonsymmetric elastic force and a nonsymmetric hysteretic force modeled according to a modified version of the Bouc–Wen model. The parameters are identified minimizing the difference between the numerical and the experimental restoring force histories. High levels of accuracy are achieved in the identification with mean square errors lower than 2%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3