Identification of hysteretic control influence operators representing smart actuators part I: Formulation

Author:

Banks H. T.1,Kurdila A. J.23,Webb G.2

Affiliation:

1. Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University, Raleigh 27695-8205, NC, USA

2. Department of Aerospace Engineering, Texas A&M University, College Station, 77843, TX, USA

3. Department of Mathematics, Texas A&M University, College Station, 77843, TX, USA

Abstract

A large class of emerging actuation devices and materials exhibit strong hysteresis characteristics during their routine operation. For example, when piezoceramic actuators are operated under the influence of strong electric fields, it is known that the resulting input–output behavior is hysteretic. Likewise, when shape memory alloys are resistively heated to induce phase transformations, the input–output response at the structural level is also known to be strongly hysteretic. This paper investigates the mathematical issues that arise in identifying a class of hysteresis operators that have been employed for modeling both piezoceramic actuation and shape memory alloy actuation. Specifically, the identification of a class of distributed hysteresis operators that arise in the control influence operator of a class of second order evolution equations is investigated. In Part I of this paper we introduce distributed,hysteretic control influence operators derived from smoothed Preisach operators and generalized hysteresis operators derived from results of Krasnoselskii and Pokrovskii. For these classes, the identification problem in which we seek to characterize the hysteretic control influence operator can be expressed as an ouput least square minimization over probability measures defined on a compact subset of a closed half-plane. In Part II of this paper, consistent and convergent approximation methods for identification of the measure characterizing the hysteresis are derived.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3