Broadband signal reconstruction for SHM: An experimental and numerical time reversal methodology

Author:

Falcetelli Francesco12ORCID,Venturini Nicolas12,Romero Maria Barroso3,Martinez Marcias J2ORCID,Pant Shashank4,Troiani Enrico1

Affiliation:

1. Department of Industrial Engineering, University of Bologna, Forlì, FC, Italy

2. Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, USA

3. Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands

4. Aerospace Research Centre, National Research Council of Canada, Ottawa, ON, Canada

Abstract

Structural Health Monitoring (SHM) aims to shift aircraft maintenance from a time-based to a condition-based approach. Within all the SHM techniques, Acoustic Emission (AE) allows for the monitoring of large areas by analyzing Lamb waves propagating in plate like structures. In this study, the authors proposed a Time Reversal (TR) methodology with the aim of reconstructing an original and unaltered signal from an AE event. Although the TR method has been applied in Narrow-Band (NwB) signal reconstruction, it fails when a Broad-Band (BdB) signal, such as a real AE event, is present. Therefore, a novel methodology based on the use of a Frequencies Compensation Transfer Function (FCTF), which is capable of reconstructing both NwB and real BdB signals, is presented. The study was carried out experimentally using several sensor layouts and materials with two different AE sources: (i) a Numerically Built Broadband (NBB) signal, (ii) a Pencil Lead Break (PLB). The results were validated numerically using Abaqus/CAETM with the implementation of absorbing boundaries to minimize edge reflections.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3