Composite Panel Damage Classification Based on Guided Waves and Machine Learning: An Experimental Approach

Author:

Perfetto Donato1ORCID,Rezazadeh Nima1ORCID,Aversano Antonio1ORCID,De Luca Alessandro1ORCID,Lamanna Giuseppe1ORCID

Affiliation:

1. Department of Engineering, University of Campania “L. Vanvitelli”, Via Roma 29, 81031 Aversa, Italy

Abstract

Ultrasonic guided waves (UGW) are widely used in structural health monitoring (SHM) systems due to the sensitivity of their propagation mechanisms to local material changes, i.e., those induced by damage. Post-processing of the signals gathered by piezoelectric sensors, typically used for both the excitation and the sensing of UGW, is a fundamental step to extract all the peculiar features that can be related to both damage location and severity. This research probes the efficacy of machine learning (ML) models in discerning damage location (R-Classification) and size (S-Classification). Seven supervised ML classifiers were examined: Ensemble-Subspace K-Nearest Neighbors (KNN), Ensemble-Bagged Trees, KNN-Fine, Ensemble-Boosted Trees, Support Vector Machine (SVM), Linear Discriminant, and SVM-Quadratic. The experimental dataset comprised measurements from varied reversible damage configurations on a composite panel, represented by wooden cuboids of single and three different sizes. Signal noise was minimized by performing a low-pass filter, and sequence forward selection-aided feature selection. The optimized ensemble classifier proved to be the most precise for R-Classification (95.83% accuracy), while Ensemble-Subspace KNN excelled in S-Classification (98.1% accuracy). This method offers accurate, efficient damage diagnosis and classification in composite structures, promising potential applications in aerospace, automotive, and civil engineering sectors.

Funder

University of Campania “Luigi Vanvitelli”

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3