An enhanced physics-based model to estimate the displacement of piezoelectric actuators

Author:

Miri Narges1,Mohammadzaheri Morteza2,Chen Lei1

Affiliation:

1. School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, Australia

2. Department of Mechanical Engineering, Texas A&M University at Qatar, Doha, Qatar

Abstract

Piezoelectric actuators are the foremost actuators in the area of nanopositioning. However, the sensors employed to measure the actuator displacement are expensive and difficult, if not impossible, to use. Mathematical models can map the easy-to-measure electrical signals to the displacements of the actuators as the displacement sensors are replaced with the models. In addition, these models can be used in model-based control system design. Two main groups of mathematical models are used for this purpose: black box and physics-based models. As an advantage, the latter has a much smaller number of parameters reducing computational demand in real-time applications. However, physics-based models suffer from (1) the relatively low accuracy of the models and (2) non-standard and ad-hoc parameter identification methods. In this research, to improve the model accuracy, mathematical structure of a well-known physics-based model, the Voigt model, is enhanced by adding two complementary terms inspired by another model, the Preisach model. Then, a standard method based on the evolutionary algorithms is proposed to identify the model’s parameters. The proposed ideas are substantiated to increase the applicability and accuracy of the model, and they are easily extendable to other physics-based models of piezoelectric actuators. The newly proposed enhanced structure of the Voigt model doubles the estimation accuracy of the original model and results in accuracies comparable with black box models.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference27 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3