Numerical and experimental investigation of damage severity estimation using Lamb wave–based imaging methods

Author:

Migot Asaad12ORCID,Bhuiyan Yeasin1ORCID,Giurgiutiu Victor1

Affiliation:

1. Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

2. Department of Mechanical Engineering, College of Engineering, Thi-Qar University, Nasiriyah, Iraq

Abstract

In this article, estimation of crack size, shape, and orientation was investigated numerically and experimentally using Lamb waves. A hybrid global–local approach was used in conjunction with the imaging methods for the numerical simulation. The hybrid global–local approach allowed fast and efficient prediction of scattering wave signals for Lamb wave interaction with crack from various incident directions. The simulation results showed the directionality effect of the scattering wave signals and suggested an optimum transmitter–sensor configuration. Two imaging methods were used: one involves the synthetic time reversal concept and the other involves Gaussian distribution function. Both imaging methods show very good agreement during simulations. Experiments were designed and conducted based on the simulated results. A network of eight piezoelectric wafer active sensors was used to capture the scattering waves from the crack. Both the pitch-catch and pulse-echo experimental modes were used. The directionality effect of incident Lamb waves on the imaging results was studied. The effect of summation, multiplication, and combined algorithms for each imaging method was studied. It was found that both methods can successfully predict the crack size and orientation. An attempt was made to use these imaging methods for detecting and sizing smaller sized damage (1- to 3-mm-diameter hole). It was found that these methods can successfully localize the hole, but size estimation was a bit challenging because of the smaller dimensions. The scattering waves for various hole sizes were studied.

Funder

Iraqi ministry of higher education

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3