The experimental analysis on the driving characteristics of photo response torsion actuator

Author:

Liu Yafeng1,Wang Xinjie1ORCID,Wang Jiong1,Chen Hejuan1,Huang Jiahan2

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

2. School of Mechatronics Engineering, Foshan University, Foshan, China

Abstract

The lanthanum-doped lead zirconate titanate ceramic is a well-known photostrictive material and has been studied extensively as wireless photo-controlled microactuators for its characteristic of photostrictive effect. However, the hysteresis phenomenon between photovoltage and photo-induced deformation has seriously hindered the application of the high-frequency dynamic field. The primary purpose of this article is to propose a photo response torsion actuator driven by opto-electrostatic hybrid driving method based on lanthanum-doped lead zirconate titanate ceramic to achieve the goal of rapid response regardless of the hysteresis phenomenon. To this end, this study observed the driving voltage, the relationship between the photovoltaic voltage of lanthanum-doped lead zirconate titanate ceramic and the deflection of the actuator, and the influence of different loads on driving characteristics through a series of experiments. From these experiments, the results indicate that when lanthanum-doped lead zirconate titanate ceramic is irradiated by ultraviolet light, the photovoltaic voltage with load is lower than that without load. The trend of deformation curves is in agreement with the trend of the driving voltage curves under different loads conditions. And the deformation of torsion actuator increases with the increase in light intensity. Therefore, the photo response torsion actuator driven by the opto-electrostatic hybrid driving method can control the deformation with rapid response speed effectively; meanwhile, the hysteresis phenomenon can be ignored.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3