Experimental Analysis of IPMC Optical-Controlled Flexible Driving Performance under PLZT Ceramic Configuration

Author:

Liu Yafeng123,Ming Pingmei2ORCID,Chen Jianhui3,Jing Chenghu1ORCID

Affiliation:

1. School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China

2. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China

3. Shitai Industrial Corp Ltd., Taizhou 317100, China

Abstract

Ionic polymer metal composite (IPMC) is regarded as the mainstream application material for achieving flexible driving technology in various engineering fields. In this article, aiming at the non-independence of the current IPMC electric driving method, an IPMC optical-controlled flexible driving method based on the photoinduced effects of lanthanum-modified lead zirconate titanate (PLZT) ceramic is proposed. To this end, a mathematical model for IPMC optical controlled flexible driving is built on the basis of the photovoltaic characteristic of PLZT ceramic, and the driving performance is experimentally analyzed through different lengths of IPMC under the excitation of different direct currents and light intensities. From the analysis and experimental results, when PLZT ceramic is irradiated by different light intensities, the output deformation of IPMC increases with increases in light intensity, and finally reaches a stable state. Moreover, the actuation curves obtained by light excitation and direct current excitation are consistent, and the motion coefficient reflects the driving performance more accurately. In addition, using light energy as an excitation source to drive IPMC not only provides new ideas for its development in the flexible driving field, but also provides a theoretical basis for its practical application.

Funder

Foundation of the Education Department of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3