Affiliation:
1. European Organization for Nuclear Research (CERN), Genève, Switzerland
2. Department of Mechanical, Energy and Management Engineering of University of Calabria, Rende, Italy
Abstract
Recent studies on Shape Memory Alloy rings have been undertaken at the European Organization for Nuclear Research (CERN) to develop smart and leak-tight couplers for Ultra High Vacuum systems of particle accelerators. A special thermo-mechanical process (training) is needed to provide SMA rings with proper functional properties, that is to allow thermal mounting, dismounting, and leak tight coupling within a given service temperature window. Low temperature ring expansion is a crucial part of the training process as it gives suitable size, shape recovery properties, and thermal stability range to the SMA element. An analytical model, based on simplified elastic-plastic axisymmetric concepts, has been developed and implemented in a commercial software to simulate isothermal SMA rings expansions. It is particularly useful to predict the final size of a martensitic SMA coupler as a function of the initial dimensions and of the pre-deformation parameters. The effectiveness of the model has been demonstrated by analyzing the stress/deformation field occurring in a wide range of ring geometries for different load cases including martensite reorientation and plasticity. The predictions of the analytical model have been systematically compared with those obtained by axisymmetric finite element (FE) analyses based on elastic-plastic constitutive models and experimental measurements.
Subject
Mechanical Engineering,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献