NiTi shape memory alloy pipe couplers for ultra-high vacuum systems: development and implementation

Author:

Niccoli FORCID,Giovinco V,Garion CORCID,Maletta CORCID,Chiggiato P

Abstract

Abstract Novel Nickel–Titanium (NiTi)-based shape memory alloy (SMA) pipe couplers were designed and developed. They are suitable for room-temperature ultrahigh vacuum (UHV) systems and provide a quick and compact solution at reasonable cost. Their use is particularly interesting for restricted-access areas of particle accelerators as their installation/dismounting can be performed remotely by temperature variations. A NiTi SMA with suitable composition was selected. NiTi couplers with different diameters in the range 30–135 mm were manufactured and thermo-mechanically trained to exhibit a proper two-way shape memory behaviour which comply with the strict operative constraints for coupling applications in room temperature vacuum sectors. The connectors are easily implementable as they were designed to be compatible with commercially available flanges (DN16, DN25, DN100) used worldwide in vacuum systems. The effect of the SMA joint geometry on the thermo-mechanical response and vacuum performance was investigated by numerical studies and experimental analyses such as strain-gauge, extensometer and leak-tightness tests performed under different operating conditions including static axial loads and multiple thermal cycles. It was demonstrated that NiTi-based connectors can be thermally mounted upon heating and can guarantee the leak tightness of the vacuum pipe within a suitable temperature window. The thermal dismounting was also verified by cooling the couplers down to subzero temperatures (lower than −40 °C). Possible use of these connections at European Organization for Nuclear Research (CERN) is foreseen in vacuum assemblies installed in high radioactive areas, like those nearby particle collision points and beam collimators. Thanks to their compactness, SMA couplers are also of great interest for connecting beam pipes with small aperture such as those studied for the electron–positron future circular collider (FCC-ee) and next-generation synchrotron light facilities.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3