Flexoelectric vibration control of parabolic shells

Author:

Zhang Jie1ORCID,Fan Mu1ORCID,Tzou Hornsen1

Affiliation:

1. Interdisciplinary Research Institute of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China

Abstract

The presented work focuses on the spatially distributed actuation behavior of flexoelectric actuators on a parabolic cylindrical shell panel with simply supported boundary conditions. A flexoelectric actuator with significant electric field gradients could generate actuation forces and control moments to drive or control system oscillations. For an engineering structure with initial excitations, flexoelectric actuators could be employed to achieve vibration control with designed electric inputs. The dynamic equations of the parabolic cylindrical panel laminated with an arbitrary flexoelectric actuator are defined first. The transverse displacement excited by an external mechanical loading and flexoelectric actuators is calculated. Actuation effects and vibration control efficiency contributed by various design parameters including flexoelectric patch thickness and atomic force microscopy (AFM) probe radius are studied. As the purpose of this study is to accelerate the vibration attenuation, the open-loop control usually causes insufficient control or over-actuation effects. Using displacement feedback, velocity feedback, and acceleration feedback, the effectiveness of these three closed-loop control methods is analyzed and evaluated by the modal response. Analyses suggest that the velocity feedback could effectively attenuate oscillations with the lowest voltage input than in the other two cases. Specifically, the system damping ratio can be adjusted with velocity feedback. Lower voltage input could benefit system design and release stress concentrations caused by high electric field gradients. This research provides a basis for vibration control based on flexoelectric parabolic shell structures and provides an optimal choice for the design of flexoelectric drive closed-loop control for parabolic shell structures.

Funder

Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University

National Natural Science Foundation of China

State Key Laboratory of Mechanics and Control of Mechanical Structures

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3