Rigid–Flexible Coupled Modeling and Flexoelectric Control for Flexible Rotating Structures

Author:

Zhang Jie1,Fan Mu1,Tzou Hornsen1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, 211100 Nanjing, People’s Republic of China

Abstract

The pursuit of lightweight structures has propelled spacecraft with large flexible appendages to the forefront of modern aerospace engineering. Flexoelectric actuators, with their inherent self-sensing and self-actuating capabilities, perfectly align with the demand for lightweight structures. This paper presents a dynamic model and a flexoelectric vibration control method tailored for spacecraft equipped with single-sided flexible appendages. The spacecraft system is a central rigid hub with flexible cantilever beam appendages that allow for single-axis rotation. The flexible beam has a flexoelectric element attached to it. Leveraging Hamilton’s principle, the equations of motion are derived, accounting for flexoelectric effects, the centrifugal stiffening effect, and the coupling between rigid body attitude and flexible beam vibration. A closed-loop proportional–derivative controller is crafted for attitude control of the system. Additionally, a flexoelectric patch is employed as an actuator for active vibration control of the flexible beam. The precision and efficacy of the proposed model and control scheme are meticulously validated through numerical simulation. The results indicate that the flexoelectric patch can effectively manage the vibration of the flexible beam, consequently impacting the attitude control performance of the system. Furthermore, the flexoelectric effect of the system under static conditions is scrutinized, and the influence of the flexoelectric actuator on the rigid–flexible coupling characteristics of the system is thoroughly analyzed. These analyses not only confirm the feasibility of flexoelectricity in rigid–flexible coupled systems, but also open avenues for applications and optimizations in intelligent control methods for flexible appendages.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3